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Capacitance of Coupled Circular Microstrip
Disks

MASARU TAKAHASHI anD KOHEI HONGO, SENIOR MEMBER, IEEE

Abstract —The coupling between circular disks placed on a grounded
dielectric substrate is studied analytically and numerically. The problem is
formulated exactly by applying the Kobayashi potential, which uses discon-
tinuity properties of Weber—Schafheitlin integrals, as an electrostatic
problem when the potentials on the disks are specified. Numerical results
for charge distribution and gap capacitance are presented. The potential
distribution on the disks is calculated numerically to check if it satisfies the
specified boundary condition.

1. INTRODUCTION

HE ELECTROSTATIC problem of a pair of identical

circular disk condensers has claimed the attention of
numerous investigators over a long span of time [1]-[4].
Approximate solutions of this problem have been derived
by Kirchhoff, who refers to earlier papers by Clausius and
Helmholtz and improves the previous crude estimate for
capacitance by suggesting a plausible edge correction (also,
see papers by Maxwell, Ignatowsky, Polya and Szego, and
others [1], [2]). An exact solution of this problem also has
been attacked, and we can refer to papers by Love, Nichol-
son [1], and Nomura [3]. A critical review of the approxi-
mate solutions has been given by Hutson [2], using Love’s
integral equation, and by Leppington and Levine [4], using
another integral equation.

Recently, the fringing effects on the capacitance of a
circular parallel-plate capacitor filled with dielectric has
become an important topic because it has application to
microstrip circuits [5], [6]. The problem can be formulated
rigorously by applying a dual integral equation [5], [6] or
applying the Kobayashi potential [7], the name given by
Sneddon [1] to the expression for the potential constructed
by using the properties of Weber—Schafheitlin integrals
proposed by Kobayashi in 1931. For practical purposes the
coupling between printed microstrip circuit components is
an important problem [8], [9]. As is pointed out by
Sneddon, the problem of determining the -electrostatic
potential of the field due to two equal coplaner electrified
disks is a difficult one, so that the problems have been little
studied since Kobayashi [10] showed one of the approaches
to those kinds of problems. Recently, Uzunoglu and
Katechi [11] studied the more general problem of a coupled
microstrip resonator using numerical methods and ob-
tained some numerical results for gap capacitance. Their
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study concentrates on determining a resonant frequency. It
is the purpose of this paper to treat this problem rigorously
as an electrostatic potential problem and to obtain numeri-
cal results for a wider range of physical quantities such as
potential distribution and charge distribution, as well as
gap capacitance. We followed Kobayashi’s procedure as an
analytical method. The obtained numerical information
will serve as a confirmation of the newly developed analyti-
cal technique as well as for the practical design of micro-
wave integrated circuits. To check the validity of the pre-
sent treatment we compared the calculated potential on the
disks with specified values, and agreement between them is
satisfactory for practical purposes.

II. STATEMENT OF THE PROBLEM

The geometry of the problem is depicted in Fig. 1.
Circular disks of the same size are placed on a grounded
dielectric substrate. The thickness and relative dielectric
constant of the substrate are & and ¢,, respectively. The
separation between the centers of the disks is pa, where a is
radius of the disk. We will consider the case when potential
distributions of the disks are specified as f,(r;,6,) and
f2(ry, 0,), where (r,6,) and (r,,8,) are local cylindrical
coordinates whose origins are located at the centers of disk
1 and disk 2, respectively. According to the method of the
Kobayashi potential, we can assume a potential function in
each region as follows:
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where p, =r, /a, p, =1, /a and, W(p, z) and W,(p, z) are
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where f,(¢) and g,(%) (i=1,2) are unknown functions
which are to be determined so that the potential function
defined in (2) satisfies the boundary conditions on the
surface of the substrate except the conducting disks. In the
above equations, ®{V and @4V are potential functions when
disk 2 is absent, while the function ®{» and ®{» are those
when disk 1 is absent. Imposing the continuity of potential
functions and electric flux on the surface of the dielectric
substrate, the potential functions of the problem given in
Fig. 1 may be expressed as
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The expansion coefficients 4,,, and B,,, are to be de-
termined so that ®, and @, reduce to specified potential
distributions f,(r,, 8,) and f,(r,, 6,) on the disks. Though
®, and ®, in (3) give a general solution when arbitrary
potential distributions are specified on each disk, we will

restrict ourselves at this stage to the special case of a
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Fig. 1.

Geometry of the problem.

constant potential on the disk, since the conducting disk is
at an equipotential in practical situations. Since the expres-
sions for @, and ®, are mixed functions of variables (7, 8,)
and (r,, 6,), they must be transformed to the function of
only (r,8,) or (r,,0,) when we impose the boundary
condition on each disk. This is realized by applying the
addition theorem of Bessel functions. Setting @, ,|,., =V},
O<r<a, 0<0,<2m), 5, =V, 0<r,<a, 0<9,
< 2), and using properties of the Fourier series, we
obtain the following relations:
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where j=2/i, (i=1,2). Expanding the Bessel functions
J,.(p§) in (5) by Jacobi’s polynomials u(p*) as defined in
the Appendix, and using the orthogonality of the poly-
nomials, we derive determinantal equations for expansion
coefficients 4,,,. The results are expressed as
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where
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Once the expansion coefficients 4,,, are determined from
(6) the potential at any points is calculated from
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where functions U(p, z) are defined in (4c). The expres-
sions for charge distribution o, and o, on the surface of
disk 1 and disk 2, respectively, are derived from ®, and ®,.
The expressions for g, and o, are given by
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The charge density outside of the disk on the surface of
the substrate is found to be zero since the above integral is
shown to vanish for p,>1 using the properties of
Weber—Schafheitlin’s integral {12]. For 0 <p, <1, the in-
tegral can be expressed in terms of a hypergeometric series.
The result is
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where the relation F(a., b.c; z)=(1—z)* " F(c—a,c—
b,c; z) is used to derive the second expression on the
right-hand side of the above equation, which is a poly-
nomial of order n. The total charge on the disk is obtained
by integrating the charge density over the disk. The total
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charge of disk 1 is given by
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Similarly, the total charge of disk 2 is expressed as Q, =
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III. NuUMERICAL RESULTS AND DISCUSSION

In this section we present some numerical results for
physical quantities. Firstly, we have determined the
numerical value of the function G4 and H defined in (7) to
obtain a solution for 4,,, from (6). Since it is difficult to
calculate the integrals G4 and H analytically, we get the
results by numerical integration. G4 and H are written as
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where the integrals GA,(n, k) and Hy(n, m, k) are per-
formed analytically and are given by
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Fig. 2. The variation of expansion coefficients 4, with respect to
subscripts m and n. Thickness of the substrate is 4/a=0.5 and
separation between the disks is p =2.2. (a) €, =1.0. (b) ¢, = 9.6.
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Fig. 3. The charge distribution on disk 1 in the presence of disk 2 when

disk 1 and 2 are at potential }, and — V;, respectively.

The first integrals in (13) can be truncated by taking a
finite range of integration, since the term P(§, h)—1/
(1+¢,) decreases exponentially when the value of £ in-
creases. If the values of G4 and H for various values of n,
k, and m are obtained, the determination of expansion
coefficients 4, , is straightforward. A set of equations (6) is
solved using a Gauss—Seidel procedure. It is worthwhile
noting that the dependency of expansion coefficients 4,,,

on the subscripts m and n, where m and » refer to mode
numbers along the circumferential and radial directions,
respectively. In Fig. 2, we show the values of |4,,,| for
various values of m and r when the relative dielectric
constant of the substrate is ¢, =1.0 (Fig. 2a) and ¢, = 9.6
(Fig. 2b), the thickness of the substrate is 4 /a = 0.5, and
the separation between the disks is p = 2.2. In each case,
the magnitude of A4,,, decreases more rapidly with » than
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Fig. 5. The rate of decrease of total charge distributed on disk 1

electrified to V, due to the coupling with disk 2, which is at the same

potential.

with m. Experience shows that the number of modes along
the circumferential direction (m) should be roughly four
times of that along the radial direction (n) from the
convergence point of view, particularly for tight coupling.
But the choice was not so critical, and we have not expe-
rienced in this problem the phenomenon of relative con-
vergence discussed in [13]. The numerical results for charge
distribution on the disks are shown in Fig. 3, when disk 1 is
at the potential of ¥, and the disk 2 is at —V,. These
figures show the effects of thickness and dielectric constant
of the substrate, and of the separation between the disks on
the charge distribution on the disk. Each figure depicts the
normalized charge distribution along the line connecting

the center of each disk. p =1 corresponds to the edge of the
disk, and the charge density increases near the edge in a
manner (1 — p?) /2. When the coupling is rather close, the
charge density shows a tendency to concentrate around the
edge close to another disk, and the symmetry of charge
distribution is broken considerably. The degree of the
asymmetry of the charge distribution is one of the mea-
sures of the amount of electrostatic coupling between the
disks. When the dielectric constant of the substrate is very
large or the thickness of the substrate is very small, the
coupling effect is little recognized. Since the electric-field
flux, which starts from disk 1 and ends on disk 2, increases
as the disks come closer, the total charge stored in each
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Fig. 6. The variation of gap capacitance C, with respect to separation
between disks p.

disk increases. As shown in (11), the total charge is propor-
tional to the expansion coefficients A,. The relations be-
tween the separation p, relative dielectric constant ¢,, and
Aqyy /A, are shown in Fig. 4, where 4, is the corresponding
expansion coefficient associated with a single disk. On the

other hand, when both disks are at the equal potential ¥,
the total charge decreases to some limited values as the
disks come closer. The behavior is shown in Fig 5.
Uzunoglu and Katechi proposed a gap capacitance C,asa
measure of electrostatic coupling between the disks, which
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TABLEI
POTENTIAL DISTRIBUTION ON THE SURFACE OF THE SUBSTRATE
ALONG THE LINE JOINING THE CENTERS OF THE DISKS

POTENTIAL &[v] p=2.2 h/a=0.5

t sr=l.0 sr=2.65 Er=9'6
1.1 0.000000 0.000000 0.000000
1.0 0.998220 0.998161 0.998113
0.75 0.999581 0.999583 0.999584
0.5 0.999819 - 0.999743 0.999680
0.25 1.001006 1.001101 1.001177
0 1.001094 1.001300 1.001467

-0.25 1.000209 1.000285 1.000347
-0.5 0.999632 0.999556 0.999495
-0.75 1.000068 1.000076 1.000083
-1.0 0.999551 0,999500 0.999459
-1.25 0.353900 0.306876 0.274874
-1.5 0.195180 0.149021 0.118961
~-1.75 0.118062 0.079110 0.055030
~-2.0 0.075978 0.044892 0.026747
=-2.25 0.051301 0,027033 0.013693
-2.5 0.036010 0.017179 0.007428
-2.75 0.026095 0.011451 0.004292

is defined as follows. Assuming the disks to be at the
potential ¥, and — V), the total charge on each disk will be
(:; — 421) — gzs

27,
where O, = CV}, is the total charge of single disk when it is
raised to potential 7},

The effects of separation between disks p, relative dielec-
tric constant ¢,, and thickness / of the substrate on the gap
capacitance C, are shown in Fig. 6. From these figures, gap
capacitances C, are found to decrease more rapidly with p
when the permittivity of the substrate becomes larger.
Finally, to check the validity of the present treatment, we
calculated the potential distribution along the line joining
each center of the disk when the disks are at the potential 1
V and —1 V. The results for p=2.2 and 4 /a=0.5 are
shown in Table I, in which the potential is specified as 1 V
in the range —1<p/a<1l, as stated above, while the
calculated values depart from specified value from 3 or 4
decimals at that range. The agreement improves with in-
creasing p, though it is not shown here for saving space.
The accuracy obtained here will be satisfactory for practi-
cal calculation.

Op=2CK,+ Q. or

IV. CONCLUSION

The coupling between the microstrip circular disks placed
on a grounded dielectric substrate is studied analytically as
an electrostatic potential problem. The problem is for-
mulated using the Kobayashi potential and is reduced to a
simultaneous equation for expansion coefficients. Some
numerical results for physical quantities such as charge
distribution, potential distribution, and gap capacitance
are obtained. The obtained results will serve as a basis for
practical design of microstrip circuit components or for
criterion of newly developed analytical techniques for re-
lated problems.
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APPENDIX
JACOBI’'S POLYNOMIAL u_(x
n

Jacobi’s polynomial u,(x) used in this paper is defined
by

°°Jm ‘/; Snt2nt1,2
u,’,"(x)=\/%'x“'"/2f(; (vx¢) ‘E /(i)dé

x“’"(l-—x)l/z—(zc—n

_ T(n+m+1/2)
Val(n+ )T (n+m+1)

Axmm(1-x)""V).

The bessel function J,,( py¥x ) is expanded by the poly-
nomial u)'(x) as

x_”’/sz(p\/;)=\/? 20(2m+4n+1)

. Jm+2n+1/2(p)

Vp

The orthogonality relation for u”(x) is given by
[0 ) (3)
0

_ 2T(n+1)T(n+m+1%) 5
T a@m+4n+ D)T(n+ DT (n+m+1) "

u™(x).
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Quasistatic Characteristics of Covered
Coupled Microstrips on Anisotropic
Substrates: Spectral and
Variational Analysis

MANUEL HORNO, MEMBER, IEEE

Abstract —In this paper, expressions to compute the upper and lower
bounds on true values of the even- and odd-mode capacitances of covered
coupled microstrips over anisotropic substrates are obtained by using the
Fourier transform and the variational approach. The method provides
accurate calculation and yields the margins of error in the computation.
Some examples are shown,

I. INTRODUCTION

N RECENT YEARS, the boundary value problems

involving microstrip lines on anisotropic substrates have
been approached from numerical [1] and analytical points
of view [2]-[9]. Alexopoulos er al. [2], [3] have shown the
effect of an anisotropic substrate on the characteristics of
covered coupled microstrips by using the method of mo-
ments. Methods for calculating the parameters of single [4],
[5] and coupled microstrip lines [6]-[8] have been per-
formed by applying transformation from anisotropic to
isotropic problems. Green’s functions for examples with
anisotropic medium have been obtained using the image-
coefficient method in [9].

Manuscript received April 7, 1982; revised June 2, 1982.
The author is with the Departamento de Electricidad y Electronica,
Facultad de Fisica, Universidad de Sevilla, Seville, Spain.

The spectral-domain approach has been used extensively
on problems of microstrip lines on isotropic substrates, and
variational expressions of capacitances have been reported
[10], [11]. This method was extended by [12] and [13] to
analyze the characteristic parameters of single and coupled
microstrips on anisotropic substrates.

The purpose of this paper is to solve the variational
problem involving covered coupled microstrips on aniso-
tropic substrates with an arbitrary permittivity tensor by
using the Fourier transform, and obtaining in this way
stationary expressions to compute the upper and lower
bounds of the mode quasi-static characteristics of this
structure. The method shows the equivalence between the
mode capacitances of this structure and another with an
isotropic substrate, in agreement with the reported results
[14]. Besides, it is a fast and accurate calculation method in
most practical cases and it yields the margins of error in
the computation.

II. ANALYSIS

Consider the configuration of covered coupled micro-
strips shown in Fig. 1, which comprises two zero-thickness
strips on an anisotropic dielectric substrate, which permit-
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